1. Let $\{X_n; n \ge 0\}$ be the simple symmetric random walk on \mathbb{Z} starting at 0. For $x \in \mathbb{Z}$, let $\tau_x := \inf\{n : X_n = x\}$. For a < 0 < b, show that

$$P\{\tau_a < \tau_b\} = \frac{b}{b-a}$$

Solution: For a < 0 < b,

$$\tau_a := \inf\{n : X_n = a\}, \ \ \tau_a := \inf\{n : X_n = a\}.$$

Now, $\forall a < 0$,

$$P\{\tau_a < \tau_b\} = P\{\tau_{a+1} < \tau_b\} \cdot P\{\tau_{-1} < \tau_{b-a-1}\}$$

= $P\{\tau_{a+2} < \tau_b\} \cdot P\{\tau_{-1} < \tau_{b-a-2}\} \cdot P\{\tau_{-1} < \tau_{b-a-1}\}$
= $P\{\tau_{-1} < \tau_b\} \cdots P\{\tau_{-1} < \tau_{b-a-1}\}.$ (1)

Claim: $P\{\tau_{-1} < \tau_b\} = \frac{b}{b+1}$. We will prove it by induction. Now,

$$P\{\tau_{-1} < \tau_b\} = 1 - P\{\tau_{-1} > \tau_b\}$$

= 1 - P{\tau_{-1} > \tau_{b-1}} \cdot P{\tau_1 < \tau_{-b}}
= 1 - P{\tau_{-1} > \tau_{b-1}} \cdot P{\tau_{-1} < \tau_b} [symmetric random walk, P{\tau_1 < \tau_{-b}} = P{\tau_{-1} < \tau_b}]

$$\Rightarrow P\{\tau_{-1} < \tau_b\} = \frac{1}{1 + P\{\tau_{-1} > \tau_{b-1}\}}$$

$$= \frac{1}{1 + 1 - P\{\tau_{-1} < \tau_{b-1}\}}$$

$$= \frac{1}{1 + 1 - \frac{b-1}{b}} [by induction, P\{\tau_{-1} < \tau_{b-1}\} = \frac{b-1}{b}]$$

$$= \frac{b}{b+1}.$$

Therefore, from (1)

$$P\{\tau_a < \tau_b\} = P\{\tau_{-1} < \tau_b\} \cdots P\{\tau_{-1} < \tau_{b-a-1}\}$$
$$= \frac{b}{b+1} \frac{b+1}{b+2} \cdots \frac{b-a-1}{b-a}$$
$$= \frac{b}{b-a}.$$

Alternative Solution:- Let $\tau_a = \inf\{t \ge 0 : X_t = a\}$, $\tau_b = \inf\{t \ge 0 : X_t = b\}$ and $\tau_{a,b} = \tau_a \land \tau_b$. Now, $\tau_{a,b}$ is a stopping time. Let $A = \{\tau_{a,b} = \tau_a\}$ be the event where X hits a before hitting b. We will compute P(A). Since, $\{X_n\}$ is a simple symmetric random walk on \mathbb{Z} , hence $\limsup_{n\to\infty} X_n =$ ∞ and $\liminf_{n\to\infty} X_n = -\infty$. Therefore, almost surely $\tau_a < \infty$ and $\tau_b < \infty$. By the Optional Stopping theorem, $X^{\tau_{a,b}}$ is a martingale. Since $\tau_{a,b} \wedge n \to \tau_{a,b}$ as $n \to \infty$ a.s., we get $X_n^{\tau_{a,b}} \to X^{\tau_{a,b}}$ a.s.. As $|X_n^{\tau_{a,b}}|$ is bounded by b-a, therefore $X_n^{\tau_{a,b}} \to X^{\tau_{a,b}}$ also in L^1 . Thus

$$0 = \lim_{n \to \infty} \mathbb{E}[X_n^{\tau_{a,b}}] = \mathbb{E}[X^{\tau_{a,b}}]$$
$$= a \cdot P[\tau_{a,b} = \tau_a] + b \cdot P[\tau_{a,b} = \tau_b]$$
$$= a \cdot P[\tau_{a,b} = \tau_a] + b \cdot (1 - P[\tau_{a,b} = \tau_a])$$
$$= b + (a - b)P[\tau_{a,b} = \tau_a].$$

Therefore, $P[\tau_{a,b} = \tau_a] = \frac{b}{b-a}$. Hence we can conclude that $P\{\tau_a < \tau_b\} = \frac{b}{b-a}$.

2. Let $\{X_n; n \ge 0\}$ be a square integrable martingale in its natural filtration, with square variation process $\{\langle X \rangle_n; n \ge 0\}$. Let τ be a finite stopping time (in the natural filtration of X) such that $\mathbb{E} \langle X \rangle_{\tau} < \infty$. Show that

$$\mathbb{E}(X_{\tau} - X_0)^2 = \mathbb{E} \langle X \rangle_{\tau} \quad \text{and} \quad \mathbb{E}X_{\tau} = \mathbb{E}X_0.$$

Solution: Given that $\{X_n; n \ge 0\}$ be a square integrable martingale, therefore $X_n^2 - \langle X \rangle_n$ is also a martingale. Let us denote,

$$Z_n := X_n^2 - \langle X \rangle_n \; .$$

Now, τ be a finite stopping time and Z_n is a martingale, therefore $Z_n^{\tau} := Z_{n \wedge \tau}$ is also a martingale. Without loss of generality, let us assume that $X_0 = 0$. Therefore,

$$\mathbb{E}[Z_{n\wedge\tau}] = 0$$

$$\Rightarrow \mathbb{E}[X_{n\wedge\tau}^2] = \mathbb{E}[\langle X \rangle_{n\wedge\tau}].$$
(2)

Now, as $n \to \infty$, $\langle X \rangle_{n \wedge \tau} \to \langle X \rangle_{\tau}$. And by assumption, $\mathbb{E} \langle X \rangle_{\tau} < \infty$. Therefor by Lebesgue DCT, $\mathbb{E}[\langle X \rangle_{n \wedge \tau}] \to \mathbb{E}[\langle X \rangle_{\tau}]$. Let

$$\mathcal{F}_{\infty} := \sigma(\cup_{n \in \mathbb{N}_0} \mathcal{F}_n).$$

Since, $\{X_n; n \ge 0\}$ is a square integrable martingale with square variation process $\{\langle X \rangle_n; n \ge 0\}$. Hence, $\sup_n \mathbb{E}[X_n^2] < \infty$. Again, by martingale convergence theorem for L^2 , there exists an \mathcal{F}_{∞} -measurable r.v. X_{∞} with $\mathbb{E}[|X_{\infty}|^2] < \infty$ and $X_n \to X_{\infty}$ a.s. and in L^2 . And $(|X_n|^2)_{n \in \mathbb{N}_0}$ is uniformly integrable. Therefore by Lebesgue DCT, we can conclude that, as $n \to \infty$, $\mathbb{E}[X_{n \land \tau}^2] \to \mathbb{E}[X_{\tau}^2]$. Therefore, from (2), we can conclude that $\mathbb{E}[X_{\tau}^2] = \mathbb{E}[\langle X \rangle_{\tau}]$, hence $\mathbb{E}[(X_{\tau} - X_0)^2] = \mathbb{E}[\langle X \rangle_{\tau}]$, since we assumed w.l.o.g. $X_0 = 0$.

For the proof of the 2nd part, we proceed as follows- Since, τ is a finite stopping time (in the natural filtration of X) such that $\mathbb{E} < X >_{\tau} < \infty$. Therefore by applying Optional Stopping Theorem, we can conclude that $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$.

3. Let $f:[0,1) \to \mathbb{R}$ be an integrable function w.r.t. Lebesgue measure λ . Let $I_{n,k} := [k2^{-n}, (k+1)2^{-n})$ for $n \in \mathbb{N}$ and $k = 0, 1, \dots, 2^n - 1$. Define $f_n: [0,1) \to \mathbb{R}$ as follows: if $x \in I_{n,k}$

$$f_n(x) := 2^n \int_{I_{n,k}} f d\lambda.$$

Show that $\{f_n; n \ge 1\}$ is a uniformly integrable martingale in an appropriate filtration and deduce that $f_n(x) \to f(x)$ for λ almost all $x \in [0, 1)$.

Solution: Consider,

$$\mathcal{F}_n := \sigma(\{I_{n,k} : k = 0, 1, \cdots, 2^n - 1)\}$$

We will show that \mathcal{F}_n is a filtration i.e. $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$, where $\mathcal{F}_{n+1} := \sigma(\{I_{n+1,k} : k = 0, 1, \dots, 2^{n+1} - 1\})$. Now,

$$I_{n,k} := [k2^{-n}, (k+1)2^{-n})$$

= $[2k2^{-(n+1)}, (2k+1)2^{-(n+1)}) \cup [(2k+1)2^{-(n+1)}, (2k+2)2^{-(n+1)})$
= $I_{n+1,2k} \cup I_{n+1,2k+1}$.

As $I_{n+1,2k}$, $I_{n+1,2k+1} \in \mathcal{F}_{n+1}$, therefore $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$.

f is a random variable on $([0,1), \mathcal{F}, \lambda)$, where \mathcal{F} denotes the σ -algebra generated by all the Lebesgue measurable sets. f is integrable, hence $f \in \mathcal{L}^1$.

Now, $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a filtration in \mathcal{F} . Again, $\{\frac{k}{2^n}: n\in\mathbb{N}, k=0,1,\cdots,2^n-1\}$ is dense in [0,1). Therefore, $(\mathbb{E}(f|\mathcal{F}_n))_{n\in\mathbb{N}}$ is a uniformly integrable stochastic process. Let us define,

$$\mathcal{F}_{\infty} := \sigma(\{I_{n,k} : n \in \mathbb{N}, k = 0, 1, \cdots, 2^n - 1\})$$
$$= \sigma(\{\mathcal{F}_n : n \in \mathbb{N}\}).$$

Now $\mathbb{E}(f|\mathcal{F}_n)$ is the unique r.v. which is \mathcal{F}_n measurable s.t. $\mathbb{E}(f|\mathcal{F}_n) \to \mathbb{E}(f|\mathcal{F}_\infty) = f$ a.s.. Since f is \mathcal{F}_∞ measurable. Again

$$\mathbb{E}(\mathbb{E}(f|\mathcal{F}_n)|A) = \mathbb{E}(f|A), \quad \forall A \in \mathcal{F}_n.$$

Hence,

$$\frac{1}{2^n} \mathbb{E}(f|\mathcal{F}_n)(x) = \int_{I_{n,k}} f d\lambda, \quad \forall x \in I_{n,k}$$
$$\Rightarrow \mathbb{E}(f|\mathcal{F}_n)(x) = f_n(x).$$

Therefore, $\mathbb{E}(f_{n+1}|\mathcal{F}_n) = f_n$ a.s.. This completes the proof.

4. Let $\{X_i; i \ge 0\}$ be a sequence of i.i.d random variables and let N be a Poisson r.v. independent of $\{X_i, i \ge 0\}$. Let $Y := X_0 + X_1 + \cdots + X_N$. Show that Y is an infinitely divisible r.v..

Solution: Let $N \sim Poi_{\lambda}$. Now

$$\varphi_Y(t) = \sum_{k=0}^{\infty} \mathbb{P}[N=k] \mathbb{E}[e^{i\langle t, X_0 + \dots + X_N \rangle}]$$
$$= \sum_{k=0}^{\infty} \mathbb{P}[N=k] \varphi_X(t)^k$$
$$= \exp(\lambda(\varphi_X(t) - 1)).$$

 $\forall m \in \mathbb{N}, \varphi_Y(t)$ has an *m*-th root, $\exp(\frac{\lambda}{m}(\varphi_X(t)-1))$, which is the characteristic function of the r.v. $Y^m := X_0 + \cdots + X_{N^m}$, where $N^m \sim Poi_{\lambda/m}$. Hence, Y is infinitely divisible.

5. Let Y be a Binomial random variable with parameters $n \ge 1$ and p. 0 . Is Y infinitely divisible? Justify your answer.

Solution: The Bernoulli distribution is a special case of the Binomial distribution where n = 1. So, $X \sim B(1,p)$ is same as $X \sim B(p)$. Conversely, any binomial distribution, B(n,p) is the distribution of the sum of n Bernoulli trials, B(p), each with the same probability p.

The Binomial distribution is not infinitely divisible. To show this, we prove that the Bernoulli distribution is not infinitely divisible.

For 0 , let X be a Bernoulli r.v. with parameter p. We know that the generating function for X is <math>G(z) = 1 - p + pz. Now, if X is infinitely divisible, then there must be a r.v. Y with probability generating function

$$G_Y(z) := \sqrt{G(z)} = (1 - p + pz)^{1/2}$$

so that $X = Y_1 + Y_2$, where Y_1, Y_2 are i.i.d. with the same distribution as Y. But,

$$G_Y''(z) = \frac{1}{2} \left(-\frac{1}{2}\right) p^2 (1-p+pz)^{-3/2};$$

therefore,

$$G_Y''(0) = -\frac{1}{4}p^2(1-p)^{-3/2} < 0,$$

which is not a probability.

6. Let $0 < \alpha < 2$, and define a measure ν_{α} on \mathbb{R} by $\nu_{\alpha}(dx) := \theta_{\alpha}^{-1}|x|^{-\alpha-1}dx$, where θ_{α} is a positive constant. Show that ν_{α} is a canonical measure and hence that there exists an infinitely divisible probability measure μ_{α} on \mathbb{R} with the canonical triple $(0, 0, \nu_{\alpha})$. Show that for a suitable choice of θ_{α} , $\psi_{\alpha}(t)$, the logarithm of the characteristic function of μ_{α} is given as $\psi_{\alpha}(t) = -|t|^{\alpha}$.

Solution: i)From the definition of ν_{α} , it is σ -finite measure. Because, for some $a, \zeta \neq 0$ (either a, ζ both positive or both negative)

$$\int_0^a \theta_\alpha^{-1} |x|^{-\alpha-1} dx = \lim_{\zeta \to 0} \int_\zeta^a \theta_\alpha^{-1} |x|^{-\alpha-1} dx.$$

Since, $[\zeta, a]$ can be written as, $[\zeta, a] = \bigcup_i A_i$, where $A_i \cap A_j = \emptyset$ for $i \neq j$ s.t. $\int_{A_i} \theta_{\alpha}^{-1} |x|^{-\alpha-1} dx < \infty$. And at a = 0, the integral is zero. Hence, we can conclude that the measure ν_{α} is σ -finite measure. ii) $\nu_{\alpha}(\{0\}) = 0$.

iii) We will show that $\int_{\mathbb{R}} (x^2 \wedge 1) \nu_{\alpha}(dx) < \infty$. Now,

$$\int_{\mathbb{R}} (x^2 \wedge 1) \nu_{\alpha}(dx) = \int_{-1}^{1} (x^2 \wedge 1) \nu_{\alpha}(dx) + \int_{\mathbb{R} \setminus [-1,1]} (x^2 \wedge 1) \nu_{\alpha}(dx).$$

Now,

$$\int_{-1}^{1} (x^2 \wedge 1) \nu_\alpha(dx) = 2 \int_0^1 x^2 \theta_\alpha^{-1} |x|^{-\alpha - 1} dx$$
$$= 2 \int_0^1 \theta_\alpha^{-1} x^{1 - \alpha} dx$$
$$= \frac{2}{\theta_\alpha} \left[\frac{x^{2 - \alpha}}{2 - \alpha} \right]_0^1.$$

Since $\alpha < 2$, therefore $\int_{-1}^{1} (x^2 \wedge 1) \nu_{\alpha}(dx) < \infty$. Again,

$$\int_{\mathbb{R}\setminus[-1,1]} (x^2 \wedge 1) \nu_{\alpha}(dx) = \int_{\mathbb{R}\setminus[-1,1]} \nu_{\alpha}(dx)$$
$$= \int_{\mathbb{R}\setminus[-1,1]} \theta_{\alpha}^{-1} |x|^{-\alpha-1} dx$$
$$= 2\frac{1}{\theta_{\alpha}} \int_{1}^{\infty} x^{-\alpha-1} dx$$
$$= 2\frac{1}{\theta_{\alpha}} \left[\frac{x^{-\alpha}}{-\alpha}\right]_{1}^{\infty}$$

Since $\alpha > 0$, therefore $\int_{\mathbb{R}} (x^2 \wedge 1) \nu_{\alpha}(dx) < \infty$.

(i), (ii) together imply that ν_{α} is a canonical measure and hence that there exists an infinitely divisible probability measure μ_{α} on \mathbb{R} with the canonical triple $(0, 0, \nu_{\alpha})$.

If $\psi_{\alpha}(t)$ be the logarithm of the characteristic function of μ_{α} with canonical triple $(0, 0, \nu_{\alpha})$, then by Lévy-Khinchin formula

$$\psi_{\alpha}(t) = \int_{-\infty}^{\infty} (e^{itx} - 1 - itx \mathbb{1}_{\{|x| < 1\}}) \theta_{\alpha}^{-1} |x|^{-\alpha - 1} dx$$

Now

$$e^{itx} = \cos(tx) + i\sin(tx),$$
$$\int_{-\infty}^{\infty} itx \mathbb{1}_{\{|x|<1\}} \theta_{\alpha}^{-1} |x|^{-\alpha-1} dx = 0$$

because, $itx \mathbbm{1}_{\{|x|<1\}} |x|^{-\alpha-1}$ is odd function and also

$$\int_{-\infty}^{\infty} i\sin(tx)\theta_{\alpha}^{-1}|x|^{-\alpha-1}dx = 0,$$

because, $\sin(tx)|x|^{-\alpha-1}$ is odd function too. Therefore,

$$\psi_{\alpha}(t) = \int_{-\infty}^{\infty} (\cos(tx) - 1)\theta_{\alpha}^{-1} |x|^{-\alpha - 1} dx$$

= $-\theta_{\alpha}^{-1} \int_{-\infty}^{\infty} (1 - \cos(z)) \frac{|z|^{-\alpha - 1}}{|t|^{-\alpha - 1}} \frac{dz}{t}$
= $-\theta_{\alpha}^{-1} |t|^{\alpha} \int_{-\infty}^{\infty} (1 - \cos(z)) |z|^{-\alpha - 1} dz.$

Now, choose

$$\theta_{\alpha} := \int_{-\infty}^{\infty} (1 - \cos(z)) |z|^{-\alpha - 1} dz.$$

Then we can conclude that,

$$\psi_{\alpha}(t) = -|t|^{\alpha}.$$