
DATE OF EXAM 2014-15 Solution
Probability Theory (Stochastic Processes) - MIDTERM Exam - M-math 2nd year

1. Let {Xn;n ≥ 0} be the simple symmetric random walk on Z starting at 0. For x ∈ Z, let τx :=
inf{n : Xn = x}. For a < 0 < b, show that

P{τa < τb} =
b

b− a
.

Solution: For a < 0 < b,

τa := inf{n : Xn = a}, τa := inf{n : Xn = a}.

Now, ∀a < 0,

P{τa < τb} = P{τa+1 < τb} · P{τ−1 < τb−a−1}
= P{τa+2 < τb} · P{τ−1 < τb−a−2} · P{τ−1 < τb−a−1}
= P{τ−1 < τb} · · ·P{τ−1 < τb−a−1}.

(1)

Claim: P{τ−1 < τb} = b
b+1 . We will prove it by induction. Now,

P{τ−1 < τb} = 1− P{τ−1 > τb}
= 1− P{τ−1 > τb−1} · P{τ1 < τ−b}
= 1− P{τ−1 > τb−1} · P{τ−1 < τb} [symmetric random walk, P{τ1 < τ−b} = P{τ−1 < τb}]

⇒ P{τ−1 < τb} =
1

1 + P{τ−1 > τb−1}

=
1

1 + 1− P{τ−1 < τb−1}

=
1

1 + 1− b−1
b

[by induction, P{τ−1 < τb−1} =
b− 1

b
]

=
b

b+ 1
.

Therefore, from (1)

P{τa < τb} = P{τ−1 < τb} · · ·P{τ−1 < τb−a−1}

=
b

b+ 1

b+ 1

b+ 2
· · · b− a− 1

b− a

=
b

b− a
.

Alternative Solution:- Let τa = inf{t ≥ 0 : Xt = a}, τb = inf{t ≥ 0 : Xt = b} and τa,b = τa ∧ τb.
Now, τa,b is a stopping time. Let A = {τa,b = τa} be the event where X hits a before hitting b. We
will compute P (A). Since, {Xn} is a simple symmetric random walk on Z, hence lim supn→∞Xn =
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∞ and lim infn→∞Xn = −∞. Therefore, almost surely τa < ∞ and τb < ∞. By the Optional
Stopping theorem, Xτa,b is a martingale. Since τa,b ∧n→ τa,b as n→∞ a.s., we get X

τa,b
n → Xτa,b

a.s.. As |Xτa,b
n | is bounded by b− a, therefore X

τa,b
n → Xτa,b also in L1. Thus

0 = lim
n→∞

E[X
τa,b
n ] = E[Xτa,b ]

= a · P [τa,b = τa] + b · P [τa,b = τb]

= a · P [τa,b = τa] + b · (1− P [τa,b = τa])

= b+ (a− b)P [τa,b = τa].

Therefore, P [τa,b = τa] = b
b−a . Hence we can conclude that P{τa < τb} = b

b−a .

�

2. Let {Xn;n ≥ 0} be a square integrable martingale in its natural filtration, with square variation
process {< X >n;n ≥ 0}. Let τ be a finite stopping time (in the natural filtration of X) such that
E < X >τ<∞. Show that

E(Xτ −X0)2 = E < X >τ and EXτ = EX0.

Solution: Given that {Xn;n ≥ 0} be a square integrable martingale, therefore X2
n− < X >n is also a

martingale. Let us denote,
Zn := X2

n− < X >n .

Now, τ be a finite stopping time and Zn is a martingale, therefore Zτn := Zn∧τ is also a martingale.
Without loss of generality, let us assume that X0 = 0. Therefore,

E[Zn∧τ ] = 0

⇒ E[X2
n∧τ ] = E[< X >n∧τ ]. (2)

Now, as n → ∞, < X >n∧τ→< X >τ . And by assumption, E < X >τ< ∞. Therefor by Lebesgue
DCT, E[< X >n∧τ ]→ E[< X >τ ].
Let

F∞ := σ(∪n∈N0
Fn).

Since, {Xn;n ≥ 0} is a square integrable martingale with square variation process {< X >n;n ≥ 0}.
Hence, supn E[X2

n] < ∞. Again, by martingale convergence theorem for L2, there exists an F∞-
measurable r.v. X∞ with E[|X∞|2] < ∞ and Xn → X∞ a.s. and in L2. And (|Xn|2)n∈N0

is uniformly
integrable. Therefore by Lebesgue DCT, we can conclude that, as n→∞, E[X2

n∧τ ]→ E[X2
τ ].

Therefore, from (2), we can conclude that E[X2
τ ] = E[< X >τ ], hence E[(Xτ −X0)2] = E[< X >τ ], since

we assumed w.l.o.g. X0 = 0.

For the proof of the 2nd part, we proceed as follows- Since, τ is a finite stopping time (in the natural
filtration of X) such that E < X >τ< ∞. Therefore by applying Optional Stopping Theorem, we can
conclude that E[Xτ ] = E[X0].

�
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3. Let f : [0, 1)→ R be an integrable function w.r.t. Lebesgue measure λ. Let In,k := [k2−n, (k+ 1)2−n)
for n ∈ N and k = 0, 1, · · · , 2n − 1. Define fn : [0, 1)→ R as follows: if x ∈ In,k

fn(x) := 2n
∫
In,k

fdλ.

Show that {fn;n ≥ 1} is a uniformly integrable martingale in an appropriate filtration and deduce that
fn(x)→ f(x) for λ almost all x ∈ [0, 1).

Solution: Consider,
Fn := σ({In,k : k = 0, 1, · · · , 2n − 1)}.

We will show that Fn is a filtration i.e. Fn ⊆ Fn+1, where Fn+1 := σ({In+1,k : k = 0, 1, · · · , 2n+1 − 1).
Now,

In,k := [k2−n, (k + 1)2−n)

= [2k2−(n+1), (2k + 1)2−(n+1)) ∪ [(2k + 1)2−(n+1), (2k + 2)2−(n+1))

= In+1,2k ∪ In+1,2k+1.

As In+1,2k, In+1,2k+1 ∈ Fn+1, therefore Fn ⊆ Fn+1.
f is a random variable on ([0, 1),F , λ), where F denotes the σ-algebra generated by all the Lebesgue
measurable sets. f is integrable, hence f ∈ L1.
Now, (Fn)n∈N is a filtration in F . Again, { k2n : n ∈ N, k = 0, 1, · · · , 2n − 1} is dense in [0, 1).
Therefore, (E(f |Fn))n∈N is a uniformly integrable stochastic process.
Let us define,

F∞ := σ({In,k : n ∈ N, k = 0, 1, · · · , 2n − 1})
= σ({Fn : n ∈ N}).

Now E(f |Fn) is the unique r.v. which is Fn measurable s.t. E(f |Fn) → E(f |F∞) = f a.s.. Since f is
F∞ measurable. Again

E(E(f |Fn)|A) = E(f |A), ∀A ∈ Fn.

Hence,

1

2n
E(f |Fn)(x) =

∫
In,k

fdλ, ∀x ∈ In,k

⇒ E(f |Fn)(x) = fn(x).

Therefore, E(fn+1|Fn) = fn a.s.. This completes the proof.

�

4. Let {Xi; i ≥ 0} be a sequence of i.i.d random variables and let N be a Poisson r.v. independent of
{Xi, i ≥ 0}. Let Y := X0 +X1 + · · ·+XN . Show that Y is an infinitely divisible r.v..
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Solution: Let N ∼ Poiλ. Now

ϕY (t) =

∞∑
k=0

P[N = k]E[ei〈t,X0+···+XN 〉]

=

∞∑
k=0

P[N = k]ϕX(t)k

= exp(λ(ϕX(t)− 1)).

∀m ∈ N, ϕY (t) has an m-th root, exp( λm (ϕX(t) − 1)), which is the characteristic function of the r.v.
Y m := X0 + · · ·+XNm , where Nm ∼ Poiλ/m. Hence, Y is infinitely divisible.

�

5. Let Y be a Binomial random variable with parameters n ≥ 1 and p. 0 < p < 1. Is Y infinitely
divisible? Justify your answer.

Solution: The Bernoulli distribution is a special case of the Binomial distribution where n = 1. So,
X ∼ B(1, p) is same as X ∼ B(p). Conversely, any binomial distribution, B(n, p) is the distribution of
the sum of n Bernoulli trials, B(p), each with the same probability p.
The Binomial distribution is not infinitely divisible. To show this, we prove that the Bernoulli distribution
is not infinitely divisible.
For 0 < p < 1, let X be a Bernoulli r.v. with parameter p. We know that the generating function for
X is G(z) = 1 − p + pz. Now, if X is infinitely divisible, then there must be a r.v. Y with probability
generating function

GY (z) :=
√
G(z) = (1− p+ pz)1/2

so that X = Y1 + Y2, where Y1, Y2 are i.i.d. with the same distribution as Y . But,

G′′Y (z) =
1

2

(
−1

2

)
p2(1− p+ pz)−3/2;

therefore,

G′′Y (0) = −1

4
p2(1− p)−3/2 < 0,

which is not a probability. �

6. Let 0 < α < 2, and define a measure να on R by να(dx) := θ−1α |x|−α−1dx, where θα is a positive con-
stant. Show that να is a canonical measure and hence that there exists an infinitely divisible probability
measure µα on R with the canonical triple (0, 0, να). Show that for a suitable choice of θα, ψα(t), the
logarithm of the characteristic function of µα is given as ψα(t) = −|t|α.

Solution: i)From the definition of να, it is σ-finite measure. Because, for some a, ζ 6= 0 (either a, ζ
both positive or both negative)∫ a

0

θ−1α |x|−α−1dx = lim
ζ→0

∫ a

ζ

θ−1α |x|−α−1dx.
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Since, [ζ, a] can be written as, [ζ, a] = ∪iAi, where Ai ∩ Aj = ∅ for i 6= j s.t.
∫
Ai
θ−1α |x|−α−1dx < ∞.

And at a = 0, the integral is zero. Hence, we can conclude that the measure να is σ-finite measure.
ii) να({0}) = 0.
iii) We will show that

∫
R(x2 ∧ 1)να(dx) <∞.

Now, ∫
R
(x2 ∧ 1)να(dx) =

∫ 1

−1
(x2 ∧ 1)να(dx) +

∫
R\[−1,1]

(x2 ∧ 1)να(dx).

Now, ∫ 1

−1
(x2 ∧ 1)να(dx) = 2

∫ 1

0

x2θ−1α |x|−α−1dx

= 2

∫ 1

0

θ−1α x1−αdx

=
2

θα

[
x2−α

2− α

]1
0

.

Since α < 2, therefore
∫ 1

−1(x2 ∧ 1)να(dx) <∞. Again,∫
R\[−1,1]

(x2 ∧ 1)να(dx) =

∫
R\[−1,1]

να(dx)

=

∫
R\[−1,1]

θ−1α |x|−α−1dx

= 2
1

θα

∫ ∞
1

x−α−1dx

= 2
1

θα

[
x−α

−α

]∞
1

Since α > 0, therefore
∫
R(x2 ∧ 1)να(dx) <∞.

(i), (ii), (iii) together imply that να is a canonical measure and hence that there exists an infinitely
divisible probability measure µα on R with the canonical triple (0, 0, να).
If ψα(t) be the logarithm of the characteristic function of µα with canonical triple (0, 0, να), then by
Lévy-Khinchin formula

ψα(t) =

∫ ∞
−∞

(eitx − 1− itx1{|x|<1})θ
−1
α |x|−α−1dx

Now
eitx = cos(tx) + i sin(tx),∫ ∞

−∞
itx1{|x|<1}θ

−1
α |x|−α−1dx = 0,

because, itx1{|x|<1}|x|−α−1 is odd function and also∫ ∞
−∞

i sin(tx)θ−1α |x|−α−1dx = 0,
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because, sin(tx)|x|−α−1 is odd function too. Therefore,

ψα(t) =

∫ ∞
−∞

(cos(tx)− 1)θ−1α |x|−α−1dx

= −θ−1α
∫ ∞
−∞

(1− cos(z))
|z|−α−1

|t|−α−1
dz

t

= −θ−1α |t|α
∫ ∞
−∞

(1− cos(z))|z|−α−1dz.

Now, choose

θα :=

∫ ∞
−∞

(1− cos(z))|z|−α−1dz.

Then we can conclude that,
ψα(t) = −|t|α.

�
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