DATE OF EXAM 2014-15 Solution
Probability Theory (Stochastic Processes) - MIDTERM Exam - M-math 2nd year

1. Let {X,;n > 0} be the simple symmetric random walk on Z starting at 0. For = € Z, let 7, :=
inf{n : X,, = z}. For a < 0 < b, show that

P{r, <1} =

b—a’

Solution: For a <0 < b,
Tq :=inf{n: X, = a}, 74:=inf{n:X, =a}.
Now, Va < 0,

P{ra <1} = P{ras1 <7} - P{T—1 < Tp—a—1}
= P{ra42 <7}  P{r—1 < Tp—q—2} - P{7o1 < Tp—q-1} (1)
=P{r_1 <7} - P{T-1 < Tp—a-1}

Claim: P{r_1 <7} = b_%l. We will prove it by induction. Now,

Plroy<mp}t=1-P{r—1 > 7}
=1- P{T_l > Tb—l} -P{Tl < T_b}
=1—P{r_1 > -1} P{7_1 < 7} [symmetric random walk, P{m < 7_3} = P{7_1 < 7}]

1
1+P{7’_1 > Tb—l}
1
1+1—P{r_1 <7p-1}
1 b—1

= ——— [by induction, P{7_1 < 7p—1} = ——]

b—1
14121 b

= P{r_1 <7} =

Therefore, from (1)

Plry <mp}=P{r_1 <7} - P{1-1 < Tp—a—-1}
b b4l b—a-—1
Tb+1b+2  b—a

b
b—a’

Alternative Solution:- Let 7, =inf{t > 0: X; =a}, , =inf{t > 0: X; =b} and 7,5 = 74 A Tp.
Now, 7,5 is a stopping time. Let A = {7, = 7,} be the event where X hits a before hitting b. We
will compute P(A). Since, {X,,} is a simple symmetric random walk on Z, hence limsup,,_, ., Xn, =



oo and liminf, . X,, = —oo. Therefore, almost surely 7, < co and 7, < co. By the Optional
Stopping theorem, X7+? is a martingale. Since 7, An — T, as n — 00 a.s., we get X"t = XTab
a.s.. As |X;*"| is bounded by b — a, therefore X,,*" — X7e¢ also in L'. Thus

0= lim E[X;""] = E[X7*"]

n—oo
=a- Plrap =74 + b Plrap = 7]
=a-Plrgp =7 +b- (1 = Plrgp =74)])
b+ (a —b)Pl1ep = Ta)-

Therefore, Plry, = 7o) = ﬁ. Hence we can conclude that P{r, < 7} = ﬁ.

O

2. Let {X,;n > 0} be a square integrable martingale in its natural filtration, with square variation
process {< X >,;n > 0}. Let 7 be a finite stopping time (in the natural filtration of X) such that
E < X >,< 00. Show that

E(X, - X0)?=E< X >, and EX, = EX,.

Solution: Given that {X,;n > 0} be a square integrable martingale, therefore X2— < X >, is also a
martingale. Let us denote,
Zn ::X2—<X>n.

Now, 7 be a finite stopping time and Z,, is a martingale, therefore Z] := Z, . is also a martingale.
Without loss of generality, let us assume that Xy, = 0. Therefore,

E[Zn/\r] =0
= E[X2, ] =E[< X >nr]. (2)

nAT
Now, as n — 00, < X >yar—< X >,. And by assumption, E < X >,< oco. Therefor by Lebesgue
DCT, E[< X >,ar] = E[< X >/].
Let

Foo i= U(UneNo-Fn)'

Since, {X,;n > 0} is a square integrable martingale with square variation process {< X >,;n > 0}.
Hence, sup,, E[X2] < oo. Again, by martingale convergence theorem for L?, there exists an Foo-
measurable r.v. X, with E[|Xo|?] < o0 and X,, & X a.s. and in L2. And (|X,|?)nen, is uniformly
integrable. Therefore by Lebesgue DCT, we can conclude that, as n — oo, E[X2,,] — E[X2].

Therefore, from (2), we can conclude that E[X?] = E[< X >.], hence E[(X, — X)?] = E[< X >,], since
we assumed w.l.o.g. Xg=0.

For the proof of the 2nd part, we proceed as follows- Since, 7 is a finite stopping time (in the natural
filtration of X) such that E < X >,< oo. Therefore by applying Optional Stopping Theorem, we can
conclude that E[X] = E[X,].

O



3. Let f:]0,1) — R be an integrable function w.r.t. Lebesgue measure A. Let I, , := [k27", (k+1)27")
forneNand k=0,1,---,2" — 1. Define f, : [0,1) — R as follows: if z € I,,

fnlz) = 2"/I fdA.

Show that {f,;n > 1} is a uniformly integrable martingale in an appropriate filtration and deduce that
fau(x) — f(x) for X almost all z € [0,1).

Solution: Consider,
Fni=c({Ink:k=0,1,---,2" = 1)}

We will show that F,, is a filtration i.e. F,, C F,41, where Fiq := o({lpt1 : £ =0,1,--- , 27T — 1),
Now,
I, =[k27",(k+1)27")
= [2k27 Y, 2k + )27 D) U [(2k + 1)27 D, (2% + 2)27 (D)

= Int1,26 U Tng1 2k41-

As In+1,2ka In+1,2k+1 S .7:”4_1, therefore Fn C -Fn+1-
f is a random variable on ([0,1),F,)\), where F denotes the o-algebra generated by all the Lebesgue
measurable sets. f is integrable, hence f € L1
Now, (Fn)nen is a filtration in F. Again, {2% :neNk=0,1,---,2" — 1} is dense in [0, 1).
Therefore, (E(f|F5))nen is a uniformly integrable stochastic process.
Let us define,

Fooi=0({Ipk:neNEk=0,1,---,2" —1})

=o({F,:neN}).

Now E(f|F,) is the unique r.v. which is F,, measurable s.t. E(f|F,) — E(f|Fx) = f a.s.. Since f is

Foo measurable. Again

E(E(f|Fn)[A) =E(f]4), VA€ F,.
Hence,
1
FEUFI@ = [ fan Vel
2 s
= E(f[Fn)(z) = fal2).
Therefore, E(f,+1|Fn) = fn a.s.. This completes the proof.

]

4. Let {X;;¢ > 0} be a sequence of i.i.d random variables and let N be a Poisson r.v. independent of
{X;,1>0}. Let Y := Xg+ X1 + -+ Xy. Show that YV is an infinitely divisible r.v..



Solution: Let N ~ Poiy. Now

v (t) = Y BN = kJE[e!t-Xot X))
k=0

iP[N = Klox (t)*
k=0

= exp(Apx (t) — 1)).

Vm € N, ¢y (t) has an m-th root, exp(2 (¢x(t) — 1)), which is the characteristic function of the r.v.
Y™ :=Xo+ -+ Xnm, where N™ ~ Poiy /. Hence, Y is infinitely divisible.

O

5. Let Y be a Binomial random variable with parameters n > 1 and p. 0 < p < 1. Is Y infinitely
divisible? Justify your answer.

Solution: The Bernoulli distribution is a special case of the Binomial distribution where n = 1. So,
X ~ B(1,p) is same as X ~ B(p). Conversely, any binomial distribution, B(n,p) is the distribution of
the sum of n Bernoulli trials, B(p), each with the same probability p.

The Binomial distribution is not infinitely divisible. To show this, we prove that the Bernoulli distribution
is not infinitely divisible.

For 0 < p < 1, let X be a Bernoulli r.v. with parameter p. We know that the generating function for
X is G(z) = 1—p+ pz. Now, if X is infinitely divisible, then there must be a r.v. Y with probability

generating function
Gy (2) == /G(z) = (1 — p+ pz)/?
so that X = Y7 + Y5, where Y7, Y5 are i.i.d. with the same distribution as Y. But,

1/ 1
GY(2) =3 (—2) P*(1—p+p2)~%

therefore,

which is not a probability. g

6. Let 0 < a < 2, and define a measure v, on R by v, (dz) := 0 |z|~*"1dx, where 0, is a positive con-
stant. Show that v, is a canonical measure and hence that there exists an infinitely divisible probability
measure fi, on R with the canonical triple (0,0, v,). Show that for a suitable choice of 6, 14 (t), the
logarithm of the characteristic function of yu, is given as ¥, (t) = —|¢|“.

Solution: i)From the definition of v,, it is o-finite measure. Because, for some a,{ # 0 (either a,(
both positive or both negative)

a a
/ 0 |~ dr = lim/ 0 x|~ .
0 ¢—0 ¢



Since, [¢,a] can be written as, [(,a] = U;A;, where A; N A; =0 for i # j st. [, 05 x| tde < oo.
And at a = 0, the integral is zero. Hence, we can conclude that the measure v,, is o-finite measure.

i) 0 ({0}) = 0.
iii) We will show that [i (2% A 1)ve(dz) < oo.
Now,

/]R(:U2 A D (dz) = /1 (2% A 1)vy (dx) + / (2% A 1)vg(de).

-1 R\[-1,1]

Now,
1 1
/ (2% A )vg(de) = 2/ 220 x|
-1 0
1
:2/ 0 !t ~dx
0
2 [x2—a]1
T 0, |2—« 0

Since a < 2, therefore f_ll(ch A 1)ve(de) < oo. Again,

/ (2% A 1)y (dz) = / Ve (dx)
R\[—1,1] R\[—1,1]
S N
R\[—1,1]

1 oo

= 2—/ e
oa 1
1 —Q

x
B 2904 [ -« ] 1
Since a > 0, therefore [, (2% A 1) (dz) < oco.
(i), (ii), (iil) together imply that v, is a canonical measure and hence that there exists an infinitely
divisible probability measure p, on R with the canonical triple (0,0, v,).
If 1, (t) be the logarithm of the characteristic function of p, with canonical triple (0,0, v,), then by
Lévy-Khinchin formula

¢a(t) = / (eitm —-1- itx]l{|w‘<1})0;1|9:|7”‘71d:5

— 00

Now _
e = cos(tz) + isin(tz),

/ itx]l{‘1|<1}9;1\x|_o‘_1dx =0,

because, ita:]l{|x|<1}|x|_“_1 is odd function and also

o0
/ isin(tx)0, x|~ tdr = 0,



because, sin(tx)|z|~1

Now, choose

Then we can conclude that,

is odd function too. Therefore,

wa(t) = /OO (COS(tI) — 1)0;1|x|7a71d$

—0o0

— 0.t [ o)

:—9;1|t|"/ (1 cos(2))|2|-*1d-.

— 00

|z|7* L dz
|t‘—o¢—1 t

0 = /OO (1 — cos(2))| 2|~ Ldz.

— 00

dalt) = "



